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ABSTRACT

A procedure to objectively adjust the error covariance matrices of a variational data assimilation system is

presented. It is based on popular diagnostics that utilize differences between observations and prior and

posterior model solutions at the observation locations. In the application to a data assimilation system that

combines a three-dimensional, physical–biogeochemical ocean model with large datasets of physical and

chlorophyll a observations, the tuning procedure leads to a decrease in the posterior model-observationmisfit

and small improvements in short-term forecasting skill. It also increases the consistency of the data assimi-

lation system with respect to diagnostics, based on linear estimation theory, and reduces signs of overfitting.

The tuning procedure is easy to implement and only relies on information that is either prescribed to the data

assimilation system or can be obtained from a series of short data assimilation experiments. The im-

plementation includes a lognormal representation for biogeochemical variables and associated modifications

to the diagnostics. Furthermore, the effect of the length of the observation window (number and distribution

of observations) used to compute the diagnostics and the effect of neglecting model dynamics in the tuning

procedure are examined.

1. Introduction

The availability of large observational datasets and the

increased importance of numerical models as scientific

tools is leading to a growing use of data assimilation

(DA). Application of DA to high-dimensional models in

the geosciences in general, and to biogeochemical (BGC)

ocean models in particular, have created significant im-

provements in model skill based on a variety of metrics

(Edwards et al. 2015; Stammer et al. 2016). Yet, many

opportunities for improvement remain for DA methods.

In particular, some of the most widely used DA tech-

niques require the specification of observation error and

background error values, which have a strong influence

on DA results but are difficult to determine objectively.

In applications, these uncertainties are often based on

heuristic approaches that can lead to inconsistencies

(with respect to linear estimation theory) between spec-

ified error values and the response of the DA system.

Recently, the diagnostics introduced in Desroziers et al.

(2005) set the foundation for a variety of approaches to

more objectively estimate observation and background

error values for variational and ensemble DA systems.

Observation and background error values are typi-

cally specified in the forms of R and B, the observation

and background error covariance matrices, respectively.

The dimensions of R are determined by the number of

observations used in the DA application. Observation

error covariances, the entries of R, are determined by

instrument noise, the error of representativeness, and

other error sources, such as errors in the preprocessing

of the data. These observation error contributions and

their structures are typically not well understood and are

difficult to estimate objectively.

The dimensions of B are determined by the length of

the model state vector (model grid size 3 number of

model variables), which is upward of 106 for typical three-

dimensional ocean models. Because of its size alone, the

entries of B that represent the error of the prior estimate

are difficult to determine. In practical applications, back-

ground error values are often based on an ensemble of

model simulations or a single (long) model simulation

withoutDA, thereby assuming that background errors are

proportional to variability in the nonassimilative model

output. Inflation coefficients are used in some applications

to rescale observation or background error values,

thereby modifying the weight that observations or model

solutions have in the assimilation. Some operational DACorresponding author: Jann Paul Mattern, jmattern@ucsc.edu
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systems employ complex covariance models that can

perform updates to the error estimates over the course

of a DA simulation (see, e.g., Dee et al. 2011). Recently,

the error covariance diagnostics presented in Desroziers

et al. (2005) have gained in popularity and have found use

in a variety of applications to estimate entries or subsets of

entries of R, B, or inflation coefficients.

The diagnostics in Desroziers et al. (2005) (hereafter

referred to as error covariance diagnostics) are based

on linear estimation theory, which forms the theoreti-

cal basis of variational and many ensemble-based DA

techniques [see, e.g., Talagrand (1999) for a summary].

They can be easily computed based on differences

between the observation values and the background

(prior) and analysis (posterior) model solutions at

the observation locations and are, therefore, also

often referred to as observation-minus-background,

observation-minus-analysis, and analysis-minus-background

statistics. Their computation requires an analysis solution

and, thus, output from one or multiple DA experiments

(a more detailed description of the error covariance

diagnostics and their computation is presented in section 2c).

The error covariance diagnostics were originally in-

troduced as consistency diagnostics, allowing for a rela-

tively simple way to check the error specifications of DA

systems. They have found awide variety of applications in

various DA systems. Early use of the diagnostics include

the estimation of observational error values and inflation

coefficients for an ensemble Kalman filter–based DA

system (Li et al. 2009), the estimation of observational

errors including error correlations (off-diagonal elements

of R) in a variational DA application (Bormann et al.

2010), and the estimation of the sensitivity of DA-based

model forecasts on entries in R and B (Daescu and

Todling 2010). More recently, the use of error covariance

diagnostics has gained in popularity, especially applied to

atmospheric models; several studies, including Stewart

et al. (2014), Waller et al. (2016b), Bormann et al. (2016),

and Campbell et al. (2017), use them to estimate obser-

vation error values for different observation types. The

estimation includes error correlations, and each study

highlights the importance of including these correlations

in DA systems, especially for spatially and temporally

dense observations such as satellite data. Other uses of

the error covariance diagnostics include the estimation of

model error in weak constraint DA systems [using an

extension of the error covariance diagnostics; Bowler

(2017)] and accounting for the lack of model error in

strong constraint DA systems through adjustments of R

(Howes et al. 2017). Applied to ocean models, the error

covariance diagnostics have been used in the adjustment

of observation errors and in the estimation of a time-

dependent inflation coefficient accounting for changes in

the global observing network in a historical ocean re-

analysis (Yang et al. 2017). Similar statistics, based on the

difference between observations and nonassimilative

model solutions at the observation locations and ob-

tained from an ensemble of simulations, are used in

Karspeck (2016) to estimate observational error values

for a 18-resolution global ocean model.

In practical applications, estimates of R and B ob-

tained from the error covariance diagnostics will not be

exact and are dependent on the presumed error struc-

ture. As noted in Desroziers et al. (2005), the simulta-

neous estimation of R and B requires that the spectra of

the matrices differ sufficiently, and Ménard (2016)

highlights additional limitations of the error covariance

diagnostics in the joint estimation of observation and

background error values. Several studies further show

that if observation error correlations exist in the data but

are omitted in the formulation of R, observation error

estimates obtained from the error covariance di-

agnostics tend to be inaccurate and can degrade assim-

ilation results (Bormann et al. 2016; Ménard 2016;

Waller et al. 2016b). Despite their known limitations,

useful results can still be obtained from the error co-

variance diagnostics, even if the errors are not perfectly

specified (Bormann et al. 2016; Waller et al. 2016b), and

many studies report improvements in assimilation re-

sults after modifications of the DA systems based on the

error covariance diagnostics (Bormann et al. 2016;

Campbell et al. 2017; Cordoba et al. 2017).

In this study, we apply error-covariance-diagnostics-

based covariance adjustments to a four-dimensional

variational (4D-Var) DA system consisting of a three-

dimensional coupled physical–BGC ocean model with

physical and satellite chlorophyll a data. This DA setup

has previously been presented in Mattern et al. (2017),

where manual modifications toB were used to reduce the

magnitude of increments to the BGCmodel variables and

increase their magnitude for the physical variables. The

approach presented here is based on a fixed-point itera-

tion (FPI) that iteratively determines multiplicative fac-

tors that adjust parts of R and B associated with different

subsets of observations, a technique similar to that pre-

sented in Desroziers and Ivanov (2001) and Bölöni and
Horvath (2010). We investigate if the adjustments have a

positive effect on the error covariance diagnostics and,

beyond that, on other metrics, such as the model fore-

casting skill.As this represents the first application of error

covariance diagnostics to a coupled physical–BGC DA

system, our examination highlights the balance between

increments to the physical and the BGC variables when

observations of both types are assimilated jointly.We thus

examine if this procedure avoids the need for manual

adjustments, which are cumbersome and frequently based

486 MONTHLY WEATHER REV IEW VOLUME 146

Unauthenticated | Downloaded 12/28/22 05:19 PM UTC



on subjective criteria. By using two configurations of our

DA system with different error structures (one strongly

simplified), we further examine the effect of the error

structure on the convergence characteristics of the FPI and

theDAresults. Furthermore,weassess the sensitivity of the

FPI technique on the number of assimilation cycles (length

of the observation window and number of observations)

used to generate the error covariance diagnostics (section

2c), the effect of model dynamics on the covariance esti-

mates (section 2d), and the attractiveness of the fixed point

we obtained with our procedure (section 2e).

2. Methods

a. Model and observations

The coupled physical–BGC model is based on the Re-

gionalOceanModelingSystem [ROMS;version3.7, revision

737; Haidvogel et al. (2008)]. The model domain covers

the California Current System (CCS; 308 to 488N, coast-
line to 1348W) at a horizontal resolution of 0.18 3 0.18;
it is divided into 42 terrain-following layers vertically.

Boundary conditions and physical forcing (wind, solar ra-

diation, air temperature, pressure, and humidity) are based

on output from COAMPS (Doyle et al. 2009). More details

about the physical model are provided in Veneziani et al.

(2009) and Raghukumar et al. (2015), which use a setup

identical to our present application.

The BGCmodel is the North Pacific EcosystemModel

for Understanding Regional Oceanography (NEMURO;

Kishi et al. 2007), which contains 11 BGC variables, in-

cluding two phytoplankton that represent different size

classes: large phytoplankton (LP) simulate diatoms,

dominant in the coastal waters of the CCS, while small

phytoplankton (SP) represent smaller species more

prevalent offshore. LP and SP are assumed to have fixed

but different nitrogen-to-chlorophyll a ratios, affecting the

observation operatorH for chlorophyll a and the setup of

our FPI below. NEMURO parameter values are taken

from and listed in Mattern and Edwards (2017), a pa-

rameter estimation study using the same model domain.

The setup of the coupled physical–BGCmodel is identical

to that in Mattern et al. (2017), where more information

can be found.

In our experiments, we assimilate satellite-derived

surface chlorophyll a data as the only BGC data jointly

with physical data for temperature, salinity, and sea

surface height (SSH) anomaly. The physical data in-

clude in situ, satellite-based, and reanalysis-based data.

All data sources are listed in Table 1.

b. 4D-Var-based assimilation system and log
transformation

The DA system uses the incremental, strong-

constraint 4D-Var implemented in ROMS; our imple-

mentation computes increments to the initial conditions

for the model’s state variables over 4-day assimilation

cycles, using an iterative conjugate-gradient algorithm

in order to minimize the cost function:

J(x)5
1

2
(x

b
2 x)TB21(x

b
2 x)

1
1

2
[y2H(x)]TR21[y2H(x)] . (1)

Here, x is the model state vector, and xb is its initial

estimate, also referred to as the backgroundmodel state.

The vector y contains the observations, typically at dif-

ferent points in time and space, and H is an operator

mapping x to y, accounting for temporal progression

based on the model dynamics and spatial interpolation.

The B and R are the background and observation error

covariance matrices, respectively, that are the focus of

this study and that are adjusted in the procedure detailed

in the sections below. The 4-day cycle length was chosen

as a duration over which the nonlinear model is typically

well approximated by its tangent linear representation.

In our setup, we assume normal distributions for all

physical variables, which is the standard 4D-Var ap-

proach. For theBGCvariables and chlorophyll aweassume

lognormal distributions. The lognormal assumption for

chlorophyll a better represents its characteristics in nature

TABLE 1. The data used for assimilation.

Observed variables Data source URL Data type

Chlorophyll a MODIS (on board Aqua) https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua Satellite

SSH AVISO http://www.aviso.altimetry.fr Satellite

Salinity (S) Aquarius http://podaac.jpl.nasa.gov/aquarius Satellite

Temperature (T) OSTIA http://ghrsst-pp.metoffice.com/ostia/ Satellite

T 1 S Met Office http://hadobs.metoffice.com/en4/ In situ (profiles)

T 1 S UCSD glider http://spray.ucsd.edu In situ (glider)

T 1 S Argo http://www-argo.ucsd.edu/ In situ (float)
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(Campbell 1995); for the BGC variables the lognormal as-

sumption has shown advantages in DA scenarios (Song

et al. 2012). These assumptions imply that thedistributionof

the errors in the physical variables is normal, whereas the

distribution of the errors in the log-scaled BGC variables is

normal [for details, see Fletcher and Zupanski (2006)]. This

change requires modifications to the standard cost function

in Eq. (1), and these changes are described in detail in Song

et al. (2012, 2016a). The structure of J remains essentially

the same as in the standard, purely Gaussian DA, but with

B and R describing the statistics of variables with either

normal or lognormal distributions. Applications of this

4D-Var setup with lognormal distributions are described in

Song et al. (2016a) and Mattern et al. (2017). In the

following, we implicitly presume that all variables are ap-

propriately transformed to fulfill the assumptions of the log-

transformed 4D-Var in Song et al. (2016a). This implies that

the entries in B and R associated with BGC variables are

covariances of the log-transformed variables; covariance

entries between different variables (log transformed or not)

are zero. The lognormal assumption for chlorophyll a and

the contribution of LP and SP requires modifications to

the FPI, which are detailed in appendix B. The basic tech-

nique, however, is general and does not rely on the log

transformation.

c. Error covariance diagnostics

Following Desroziers et al. (2005), we define the fol-

lowing properties that are dependent on the observa-

tions y, the prior (background) model solution at the

observation locationsH(xb), and the posterior (analysis)

model solution at the observation locations H(xa):

do
a 5 y2H(x

a
) , (2)

do
b 5 y2H(x

b
) , (3)

da
b 5H(x

a
)2H(x

b
) (4)

Thus, do
a and do

b represent model-data misfit for

the posterior and prior model solutions, respectively,

and da
b quantifies the DA increments at the observation

locations. For a linearized observation operator H,

Desroziers et al. (2005) show that the following re-

lationships should approximately hold for correctly

specified variational DA systems:

E(da
bd

oT
b )’HBHT, (5)

E(do
ad

oT
b )’R , (6)

where E(�) is the expected value. Hence, Eqs. (5) and (6)

provide diagnostics that can be used to assess the con-

sistency of the specified background and observation

errors with respect to the error covariance diagnostics.

In practice, it is simpler to evaluate the following

(weaker) relationships that are only based on the di-

agonal elements of the matrices in Eqs. (5) and (6) and

are easy to compute in DA applications:

~s
(i)
b 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jO
i
j �j2Oi

da
bjd

o
bj

s
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jO
i
j �j2Oi

(HBHT)
jj

s
5s

(i)
b ,

~s(i)
o 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jO
i
j �j2Oi

do
ajd

o
bj

s
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jO
i
j �j2Oi

R
jj

s
5s(i)

o , (7)

where the Oi, for i 5 1, . . ., ni, denote subsets of obser-

vation indices, allowing for the distinction of observa-

tion subsets, such as different observation types. The

error covariance diagnostics s
(i)
b and s(i)

o are based on B

and R, properties that must be defined prior to per-

forming DA, while ~s
(i)
b and ~s(i)

o can only be determined

after the assimilation is completed. In our FPI im-

plementation below, the computation of s
(i)
b does not

include the tangent linear model dynamics contained in

H (rather, s
(i)
b is based on the entries of B at the obser-

vation locations), a potential issue noted in Neveu et al.

(2016) and Bowler (2017) that is further investigated in

section 2d. Our implementation also does not include a

bias removal term, as used in Waller et al. (2016a) and

Cordoba et al. (2017).

d. Fixed-point iteration

Building on ideas in Desroziers and Ivanov (2001) and

Desroziers et al. (2005), we construct an FPI to adjust

background and observation errors in an attempt to

improve the consistency of the error statistics used in our

DA system with respect to the error covariance di-

agnostics. Based on Eq. (7), we set up the following it-

erative procedure:

s
(i)
b(k11) 5 ~s

(i)
b(k) and s

(i)
o(k11) 5 ~s

(i)
o(k) for

i5 1, . . . , n
i

and k5 0, . . . , n
k
. (8)

The iteration starts at k5 0 with default values forB and

R that determine s
(i)
b(k) and s

(i)
o(k). After performing a DA

simulation, typically consisting of multiple cycles, ~s
(i)
b(k)

and ~s
(i)
o(k) can be determined. Here, we compute the er-

ror covariance diagnostics for each DA cycle in-

dividually and then average across cycles to obtain ~s
(i)
b(k)

and ~s
(i)
o(k). In the next step,R andB are adjusted to satisfy

the equalities in Eq. (8). The rows and columns in B

associated with observation type i are multiplied by

l
(i)
b 5 ~s

(i)
b(k)/s

(i)
b(k). The R is treated analogously, using

the multiplier l(i)o 5 ~s
(i)
o(k)/s

(i)
o(k); because R is diagonal,

this amounts to multiplying all diagonal elements Rjj

associated with observation type i by [l(i)o ]2. This step
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determines the new values for s
(i)
b(k11) and s

(i)
o(k11), k is

incremented, and the above procedure is repeated in the

next iteration. In the following, we drop the FPI index k

from our notation; when error covariance diagnostics

appear in the same equation, they have the same

FPI index.

In our FPI procedure, we use different observation

types for adjusting B and R. For B, we distinguish be-

tween temperature, salinity, SSH, and log-chlorophyll,

the latter yielding two multipliers for LP and SP (which

are not independent; see appendix B). For R, we may

additionally split up temperature and salinity observa-

tions into satellite and in situ categories (see below for

details). Consequently, each iteration determines the

values for 9 to 11 multipliers, and background errors for

unobserved variables remain unchanged.

e. The data assimilation configurations

We test the FPI procedure for two DA configurations

that only differ in their initial values forB andR and that

showcase the range of complexity possible in different

DA systems. In the more complex DA configuration

1 (DAC1), the entries inB are based on variations around

the climatological monthly mean of a long (.10yr)

model simulation without DA. That is, daily snapshots

of the model state are aggregated for each climatological

month, and their variances determine the diagonal ele-

ments of B, resulting in 12 covariance matrices that are

selected and used in the DA based on the start of the DA

cycle (note that our FPI algorithm does not distinguish

between months and that the same l
(i)
b multipliers are

applied to all B). This configuration is nearly identical to

that used in Mattern et al. (2017), where a multiplicative

factor of 0.1 is used to reduce the BGC background error

values in order to prevent undesired changes to the bi-

ological model state in unobserved variables. For the

same reason, DAC1 also uses a multiplicative reduction

of 0.1 for entries in B, but here, it is only applied to

entries for unobserved variables that are not adjusted by

the FPI.

DA configuration 2 (DAC2) has a much simpler setup

forB: diagonal entries associated with surface values are

constant for each variable (values for the variables are

listed in Table 2), and a logistic decline with depth is

then applied to the surface values to determine sub-

surface entries. This depth reduction is meant to lower

the impact of DA at depth where oceanic variability is

weaker, and the prior estimate is presumably more ac-

curate; below 200m, variance values are approximately

10% of their magnitude at the surface. In ROMS, de-

correlation length scales determine the off-diagonal el-

ements for B; as in Song et al. (2016b), we use a

horizontal decorrelation length scale of 50 km for all

variables and a vertical one of 30 and 7m for physical

and BGC variables, respectively. In all cases B is uni-

variate, block diagonal.

Our two DA configurations also differ in their entries

for R. DAC2 uses only four observation types, whereas

DAC1 distinguishes between in situ and satellite tem-

perature and salinity observations (values are listed in

Table 2). All initial observation error values are roughly

based on those used in a previous DA application

(Mattern et al. 2017) but are simplified to one value for

each observation type.

3. Results

a. Convergence

We first examine the FPI’s convergence characteris-

tics using an FPI setup where each iteration of the FPI is

based on 10 DA simulations, each consisting of two DA

cycles. We thus refer to this DA setup as the 10 3 2

setup. The 10 simulations are evenly spaced across a 3-yr

period of interest (2013–15; the start date of the first

simulation is 5 January 2013, and that of the last is

6 September 2015) in order to capture and better

TABLE 2. The initial values for the diagonal entries of B and R used in DA configurations DAC1 and DAC2. Background error values

for DAC1 are based on a long model simulation and are not shown here.

Variable Units ðBjj)
1/2 DAC2 surface ðRjj)

1/2 DAC2 ðRjj)
1/2 DAC1

SSH m 0.03 0.03 0.03

Temperature (T) 8C 1.0 0.3 In situ: 0.1, other: 0.3

Salinity (S) — 0.1 0.3 In situ: 0.01, other: 0.3

u velocity m s21 0.03 — —

y velocity m s21 0.03 — —

LP mmol Nm23 0.3 — —

SP mmol Nm23 0.3 — —

Log-chlorophyll log(mmol chlam23) — 0.3 0.3

Unobserved BGC Various 0.3 — —

FEBRUARY 2018 MATTERN ET AL . 489

Unauthenticated | Downloaded 12/28/22 05:19 PM UTC



represent interannual and intrannual differences in data

availability, model misfit, (monthly) background error

values, and more. In our application, it is especially

important to include intrannual differences in the DA

cycles, largely because of seasonal differences in the

BGC model dynamics, while the length of each simu-

lation (here, two cycles) is less crucial. Initial conditions

for each of the 10 simulations are provided by a DA

simulation without covariance adjustments; more than 3

million observations are assimilated in the 20 non-

consecutive DA cycles of the 10 3 2 setup (Fig. 1,

center column).

In our tests, the FPIs converge rapidly for both DAC1

and DAC2 (Fig. 2). In both DA configurations, rela-

tively large changes to sb and so are made during the

first three iterations, after which only smaller adjust-

ments occur for all observation types. We stop each FPI

after five iterations, at which stage most multipliers have

values close to 1 (the largest deviation from 1 is the

DAC1 log-chlorophyll a background error multiplier

with a value of 0.880; see Fig. 2d), and we do not expect

significant improvements from additional iterations.

The largest overall relative changes occur for the in situ

temperature and in situ salinity observation error, which

increase by factors of 7 and 10, respectively (with a no-

ticeable effect in the results below). Apart from these

large changes,sb andso remain between 25%and 250%

of their original values for all other observation types.

Despite differences in configurations that cannot be

eliminated by the FPI, such as the spatial structure of

background errors in DAC1 or differences in entries for

unobserved variables,sb and so converge to very similar

values for DAC1 and DAC2. For DAC2, where no

distinction is made between in situ and other observa-

tion types, the so for temperature and salinity converge

toward the same values as DAC1’s so for the satellite

observations, which far outnumber in situ observations

and, thus, largely determine the error covariance di-

agnostics. These similarities between the final entries in

B and R for the two DA configurations indicate that the

procedure converges toward the same fixed point. Fur-

ther tests in section 3e highlight that the FPI converges

to nearly identical values if the initial entries in B and R

are modified by random multipliers. Following the FPI

procedure, can we now expect similar DA results for the

tuned DAC1 and DAC2?

b. Consistency and model-observation misfit

In our assessment, we evaluate the effects of the co-

variance adjustments by performing a yearlong DA

simulation for each of the twoDA configurations before

and after the covariance adjustments. Each simulation

starts on 1 January 2013 and spans all of 2013, during

which more than 15 million observations (Fig. 1, left

column) are assimilated in 92 cycles. To compare the

DA configurations, we used several metrics that distin-

guish between observation types and DA cycles. That is,

the metrics below were computed for each cycle and

observation type individually (and are, thus, dependent

on Oi,c, the observations associated with observation

type i and DA cycle c).

We are primarily interested in improving the consis-

tency of the DA system, with respect to the error co-

variance diagnostics, and assessing its effect on the DA

result. To quantify this consistency, we define the metric

es as

e(i,c)s 5
1

2

����~s(i,c)
o 2s(i,c)

o

s
(i,c)
o

����1 1

2

�����~s
(i,c)
b 2s

(i,c)
b

s
(i,c)
b

�����, (9)

representing an evenly weighted average of fractional

discrepancies between expected statistics. A lower value

of e(i,c)s indicates higher consistency with respect to the

observations included inOi,c. The FPI leads to an overall

FIG. 1. The number of temperature (T; orange), SSH (yellow),

salinity (S; blue), and chlorophyll a (Chl; green) observations used

in our experiments; darker colors mark in situ observations (see

arrows). Our FPI is based on the (center) 10 3 2 setup. The prior

and posterior model-observation misfits in section 3b were de-

termined based on (left) a longer DA simulation spanning all of

2013, while the FPI sensitivity experiments in section 3c are based

on (right) the 1 3 2 setup.
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improvement in consistency for all observation types for

both DAC1 and DAC2 (Figs. 3a,b). As expected, the

FPI leads to generally improved consistency values.

Only a small number of cycles show an increase in es
following the tuning procedure; this occurs mostly for

two observation types, log-LP and log-SP in DAC1.

Notably, the largest improvement in consistency occurs

for in situ temperature and salinity inDAC1, which have

especially high es values in the untuned system. The

FPI also leads to an improvement in an alternative

consistency metric that is based on the posterior (mini-

mum) value of the cost function: in a consistent DA

system, J(xa) is expected to be x2-distributed with nobs
degrees of freedom, where nobs is the number of obser-

vations. Hence, E[J(xa)/nobs] 5 1 and J(xa)/nobs ’ 1 can

be used as a consistency diagnostic [often referred to as

‘‘Jmin’’ diagnostic; see Talagrand (1999) and Ménard
(2016)]. In both configurations, the value of J(xa)/nobs is

closer to 1 in the tuned systems, with a bigger im-

provement forDAC1; while there is still large variability

between cycles, the cycle average J(xa)/nobs is moved

from 1.97 to 0.99 by the tuning (Fig. 4a). For DAC2, the

untuned system performs slightly better, and the FPI

leads to an improvement from 0.88 to 0.92 (Fig. 4b).

Besides consistency, an important measure of per-

formance is the decrease in model misfit due to DA.

We quantify the posterior model-observation misfit as

the RMSE between the posterior model solution and

observations as

e(i,c)a 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jO
i,c
j �
j2Oi,c

do2

aj

s
. (10)

The FPI procedure results in improved posterior

RMSEs, which are strongly dependent on the observa-

tion type (Figs. 3c,d). For DAC1, the FPI creates a large

reduction in the posterior salinity RMSE (.40% on a

cycle average) in combination with small reduction for

satellite temperature. A small increase in the posterior

RMSE occurs for chlorophyll a, and a larger increase

occurs for the in situ observations, consistent with the

increase in observation error for these observation types

produced by the FPI (cf. Fig. 2). For DAC2, there is a

notable decrease in salinity and log-chlorophyll RMSE

(.20%), while the posterior temperature error remains,

on average, unchanged. In both configurations, the FPI

has negligible impact on the SSH misfit of the posterior

solution.

A lower posterior error does not necessarily consti-

tute a superior posterior model solution, as a closer

model fit to any particular dataset may be due to over-

fitting (fitting the solution to the random observation

FIG. 2. Convergence of (a)–(d) sb and (e)–(h) so for DAC1 (blue) and DAC2 (red). Each column corresponds to an observation

variable, and in situ (dotted lines) and satellite (dashed line) observations are distinguished by line style (for reference, in situ and satellite

observation results for DAC2 are included, as well as aggregate temperature and salinity results for DAC1). (d) For log-chlorophyll, we

distinguish between sb for LP and SP, which are identical for DAC2.
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FIG. 3. Scatterplots for the metrics introduced in section 3b for (a),(c),(e) DAC1 and (b),(d),(f) DAC2; each

panel shows the results of the DA before (x axis) and after the FPI (y axis) was used to adjust B and R. Average

values for each observation type are marked by solid lines. For DAC1, the results are split into in situ and satellite

observations for temperature and salinity. Note that the x axis in (a) is compressed beyond 1.1 to accommodate high

es values and that log-chlorophyll is split into LP (dark green PL) and SP (light green PS).
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error). Thus, ea by itself is not a useful measure of DA

performance, and to complement it, we include the prior

RMSE,

e
(i,c)
b 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jO
i,c
j �
j2Oi,c

do2

bj

s
, (11)

which is based on unassimilated observations. Because

observations are assimilated in consecutive cycles, eb is a

measure of DA performance and can be thought of as

short-term forecasting skill. Furthermore, eb is not sub-

ject to overfitting (presuming uncorrelated observation

errors) and can, in conjunction with ea, be used as an

overfitting indicator: if a DA system achieves a much

lower posterior RMSE without a reduction of the prior

RMSE in the next DA cycle, this indicates that the

posterior error reduction may be due to overfitting. It

should be noted that eb can also be interpreted as a

consistency diagnostic on innovations (Desroziers et al.

2005). In general, our FPI implementation leads to

smaller changes in the prior RMSE in comparison to the

posterior, yet, overall, the FPI improves the forecasting

skill for all observation types except in situ salinity,

in situ temperature, and SSH (Figs. 3e,f; again, SSH

remains nearly unaffected by the FPI). Interestingly, the

prior RMSE for chlorophyll a is slightly better with

tuning. Thus, the lower posterior RMSE of the untuned

system in DAC1 did not translate into an improved

forecast, an indication of overfitting that was effectively

removed by the FPI. A similar conclusion can be drawn

from the results for the in situ observations, which are fit

more tightly in the untuned system, resulting in a larger

misfit to the satellite observations, which vastly out-

number in situ observations for both temperature and

salinity (see Fig. 1). The covariance tuning increases the

observation error for in situ temperature and salinity,

thereby relaxing the fit to in situ observations but im-

proving it for the satellite data. Another possible factor

explaining the discrepancy between in situ and satellite

model misfit for temperature and salinity may be that

the observation values from the different data sources

do not agree well. [The agreement is not easily quanti-

fiable, as in situ observations are mostly subsurface,

while satellite observations are from the ocean surface;

a possible disagreement between data could perhaps be

rectified by bias correction, examined in Waller et al.

(2016a), but we did not implement a bias correction in

this application.]

c. FPI sensitivity

In our FPI experiments above, we used a setup where

each iteration requires 10 assimilative simulations, each

consisting of two cycles. Even though these simulations

can be run in parallel, a considerable computational

expense is associated with each iteration. To assess the

sensitivity of the FPI to the DA setup and gauge the

potential for drastically reducing the computational cost

of the FPI, we created a second FPI setup where each

iteration consists of 1, rather than 10, simulations, and in

which just over 300 000 observations are assimilated

(approximately 10% of the 10 3 2 setup; Fig. 1, right

column). Because the single simulation still consists

of two DA cycles, we refer to this setup as 1 3 2. In

the following, we test the 1 3 2 setup in both DA

FIG. 4. Scatterplots of J(xa)/nobs for each DA cycle of (a) DAC1 and (b) DAC2; both panels show the results of

the DA before (x axis) and after the FPI (y axis) was used to adjust B and R. Average values are denoted by

numbers and marked by solid lines.
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configurations, DAC1 and DAC2, and compare the re-

sults to the 10 3 2 setup.

In terms of their convergence characteristics, the

two FPI setups produce similar values, yet noticeable

differences remain for some variables, especially for

salinity background errors and log-chlorophyll obser-

vation errors (Fig. 5). For the metrics examined in sec-

tion 2b, the 10 3 2 setup results in an improvement in

consistency (lower es; not shown) over the 1 3 2 setup.

With respect to the prior and posterior model error (not

shown), the two setups exhibit systematic differences for

the different observation types but no substantial im-

provement for either 10 3 2 or 1 3 2.

While the 13 2 setup comes at a lower computational

cost, it is based on a lower number of observations. The

results above indicate that the 1 3 2 setup provides less

representative error covariance diagnostics and may be

potentially less suitable for general use in our DA ap-

plication. More evidence for this conclusion is given

when examining the background and observation error

multipliers derived from the 92-cycle, yearlong simula-

tions that were used to generate the results in section 2b.

That is, we use theB andR produced by the 13 2 FPI to

perform a new 92-cycleDA simulation for 2013 and then

compute the multipliers lb and lo from the input and

output of this long simulation. The 1 3 2 multipliers

differ from those based on the 92-cycle simulation for

the 103 2 setup (dashed lines in Fig. 6). Specifically, the

1 3 2 multipliers deviate further from 1.0, strongly in-

dicating that the 13 2 setup is less representative of the

92-cycle simulation than the 103 2 setup. The reason for

this is that as the FPI converges, background and ob-

servation error multipliers should approach 1.0. Pre-

suming now that we have an FPI setup that is fully

representative of the 92-cycle DA simulation, and a new

92-cycle simulation is started using theB andR obtained

from the FPI, the multipliers obtained from this simu-

lation should be nearly identical to 1.0 as well. De-

viations from 1.0, thus, indicate nonrepresentativeness.

In light of these results, we created a new 10 3 2 FPI

that uses the final values obtained from the 13 2 FPI in

its first iteration. This new FPI setup converges toward

the previous 103 2 values in just two iterations (for both

DAC1 and DAC2; see extension experiments in Fig. 5).

This result suggests that in practical applications, the

first iterations of an FPI can be based on a small number

of DA cycles, which come at a lower computational cost.

After a few iterations in which partial convergence is

achieved, the FPI switches to a more representative, yet

more expensive, setup that uses a higher number of DA

FIG. 5. Convergence of (a)–(d) sb and (e)–(h) so for DAC1 andDAC2 using both the 13 2 and 103 2 FPI setups (the 103 2 results are

copied from Fig. 2). Each column corresponds to an observation type, and in situ and satellite observations are distinguished by line style

(for reference, in situ and satellite observation results for DAC2 are included, as well as aggregate temperature and salinity results for

DAC1). (d) For log-chlorophyll, we distinguish between sb for LP and SP, which are identical for DAC2. A set of extension experiments

(gray-shaded background) uses the final entries of 1 3 2 FPI as the initial values for a new 10 3 2 FPI.
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cycles and more observations for full convergence (see

section 4 for further discussion).

d. Effect of model dynamics on covariance estimates

While our FPI procedure adjusts the values in B di-

rectly, the error covariance diagnostics in Eq. (5) are

based on HBHT. In 4D-Var applications such as this, the

operator H contains the tangent linear model dynamics;

hence, it is uncertain if a multiplicative adjustment of B

translates to an adjustment of similar magnitude toHBHT

after passing through the model dynamics. To quantify

the effect of the tangent linear model dynamics described

by H on the error covariance diagnostics estimates, we

split the observations into subsets based on the time since

the start of the assimilation cycle. Specifically, we split all

observations used in our 92-cycleDA simulation for 2013

into four distinct observation subsets, one for each day of

the assimilation cycle (the first subset contains all obser-

vations from the first day of each DA cycle, the second

contains observations from each second day, etc.). At the

start of each assimilation cycle, the model is initialized,

and there is no effect of dynamics; as the cycle prog-

resses and the model runs forward, the effect of model

dynamics increases. This effect propagates into ~sb, which

incorporates H and, therefore, accounts for model

dynamics. To measure the effect of model dynamics, we

compute ~sb for each of the four observational subsets

in which the impact of model dynamics becomes more

pronounced from day 1 to day 4. In our application, the

effect of model dynamics on estimates of ~sb and, sub-

sequently, the corrective multipliers, remains relatively

small (see Fig. 6). The largest change in estimates occurs

between days 1 and 2 for SSH for background and also

observation error multipliers; yet, as observed in the pre-

vious results, the FPI adjustments have little effect on

model SSH. When excluding the SSH results from the

analysis, the maximum standard deviation between the

four background error multiplier estimates is 0.13 (for sa-

linity) and 0.32 for observation error multipliers (again, for

salinity).Mean values are, as expected, close to 1.0 formost

variables (exceptions like the background error multipliers

for log-chlorophyll highlight the benefits of the 103 2 over

the 13 2 when estimating the error covariance diagnostics

for all of 2013 and also show better error covariance di-

agnostics estimates for DAC2, compared to DAC1).

e. Attractiveness of the fixed-point solutions

In a final set of experiments, we examine the attractive-

ness of the fixed points in order to investigate if there is a

broader domain inwhich the iteration converges toward the

FIG. 6. The effect of basing the FPI multipliers on subsets of observations that correspond to the first, second, third, and fourth days of

each assimilation cycle (cycle day, see section 3d). The (a)–(d) background error and (e)–(h) observation error multipliers are shown for

(left to right) each observation variable. The average multiplier for each observation type is marked by a dashed horizontal line in each

panel. Themultipliers are derived from the 92-cycle, yearlong simulations for DAC1 andDAC2 and using both the 103 2 setup (the basis

for the results presented in section 3) and the computationally less expensive 1 3 2 setup, introduced in section 3c.
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same set of values. The complexity of the functions onwhich

our FPIs are based [see Eqs. (5) and (6)], incorporating

prior and posterior model solutions, prohibits an analytical

examination. Instead, we start several FPIs in which B and

R are modified by random multipliers and investigate their

convergence characteristics. Because of the computational

expense of the FPIs, we restrict our analysis to performing

only six FPIs for DAC2 and the 13 2 setup.

At the start of the experiment, B and R are modified by

random multipliers for each observation type. Each multi-

plier, randomly chosen from the interval of [0.1, 10.0], is

squaredwhen applied toB andR (just like lb and lo used in

the FPI procedure). Using the modified error covariance

matrices as initial conditions, we then start a new FPI. In

each of our six FPIs, the entries ofB andR converge toward

the same values as the reference FPI (not modified by

multipliers) within five iterations (Fig. 7). Based on this ev-

idence, the fixed point appears to be attractive, and we

consider it unlikely that there are other fixed points within

close proximity that may yield more consistent results with

respect to the error covariance diagnostics. Yet, by modify-

ingB andR usingmultipliers,wedonot change the structure

of the specified errors. This experiment, thus, does not pro-

vide an answer to the question of if the structures ofB andR

are specified correctly or if theFPIwould converge to similar

solutions if their structures change (although the latter

question is, to some extent, addressed in our comparison of

the convergence of DAC1 and DAC2 in section 3a).

4. Discussion and conclusions

We presented a simple way to objectively adjust the

covariance matrices of variational DA systems based on

the error covariance diagnostics, which are easy to

compute based on properties prescribed to the DA

system or that can be obtained from one or more DA

cycles. In the way presented here, the modification of

covariance matrices is easy to implement and consists

of a mere rescaling of variances and associated off-

diagonal elements of B (up- and downweighting the

contribution of individual observation types to the cost

function). The result is a more consistent DA system

(based on the error covariance diagnostics) with im-

proved prior and posterior model-observation fit. In this

first application of error covariance diagnostics to a

coupled physical–BGC DA system, the covariance ad-

justments eliminate signs of overfitting present in the

untuned DA system and balance the weighting of

physical and chlorophyll a observations, which are as-

similated jointly. This can be an important issue in BGC

DA where increments to the physical variables are

weighted against biogeochemical increments, which, in

a previous setup of our DA system without error-

covariance-diagnostics-based tuning, required manual

modifications of the error covariances in order to

achieve meaningful improvement in chlorophyll a state

estimates (Mattern et al. 2017). The error covariance

FIG. 7. Convergence of (top) sb and (bottom) so for six FPIs that were initialized with randomized multipliers, in comparison to the

reference DAC2 1 3 2 FPI (black).
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diagnostics, thus, provide an objective way to determine

the weight of each observation type in the assimilation,

eliminating subjective manual decisions.

We tested the procedure on twoDA configurations that

predominantly differ in their prescribed background error

structure. DAC1, the first configuration, bases its back-

ground error values on the statistics of a long model sim-

ulation without DA, while the second configuration,

DAC2, uses constant surface variance values with a depth

decline, severely reducing the complexity of the prescribed

values. The covariance adjustments led to improvements

in both configurations, and, after the adjustments, they

exhibit similar characteristics in terms of the statistics we

examined. While the improvements for DAC1 can, to

some extent, be attributed to the downweighting of in situ

observations, which showed indications of overfitting prior

to tuning, the FPI does more than eliminate somewhat

obvious shortcomings in our configurations. In particular,

it also improves DAC2 where no distinction is made be-

tween in situ and other observations (either in terms of

different observation error values or in the tuning pro-

cedure itself). Furthermore, the simpler but tuned DAC2

clearly outperforms the untunedDAC1with respect to the

posterior and prior model-observation fit, and it provides

very similar results after tuning. This outcome suggests

that covariance estimates with a very simple structure,

together with covariance tuning, may offer an alternative

way to determine values for B without the requirement of

an ensemble or a long model simulation.

FPIs based on error covariance diagnostics may con-

verge toward incorrect error values if the error structure

is not correctly modeled. One issue that several studies

note is difficulties in estimating background and obser-

vation error values jointly (Desroziers et al. 2005;

Ménard 2016; Bowler 2017). Under certain conditions,

the contributions of the two error types cannot be sep-

arated, resulting in incorrect adjustments to R and B. In

some of our initial experiments with the FPI (not

shown), we observed only relatively small differences in

the background error values when these quantities are

estimated by themselves or jointly with observation er-

rors (only conducted for DAC2 where values for sb

remained within 68% of the joint estimates). Another

issue arises when correlated observation errors are

modeled as uncorrelated errors (Waller et al. 2016c;

Ménard 2016; Campbell et al. 2017). In this scenario, the

observation error is typically underestimated by the

error covariance diagnostics, effectively upweighting

observations instead of attributing their impact to spa-

tial correlations. This effect is likely influencing our

application, where we assume uncorrelated errors for all

observations, including satellite data for temperature,

salinity, and chlorophyll a. Our FPI implementation

does not make adjustments to the error structure and,

thus, cannot mitigate this likely shortcoming of our error

specification. Despite these limitations of the error co-

variance diagnostics, studies like Waller et al. (2016b),

Campbell et al. (2017), and Cordoba et al. (2017) show

that even with incorrectly modeled errors, it is possible

to obtain useful results from the error covariance di-

agnostics unless the errors are severely misspecified

(Bormann et al. 2016). Our results confirm these find-

ings: despite the assumption of uncorrelated observation

errors, and nomatter which of the two background error

specifications is used (DAC1 or DAC2), the error-

covariance-diagnostics-based FPI yields the improve-

ments in the assimilation results that we noted above.

A limitation of the specific approach presented here is

that it makes no adjustments to the background error

values for unobserved variables. This is especially an issue

in complex BGC ocean models, where typically no ob-

servations exist formost of the biological variables. In our

application, we set the background error values for un-

observed variables to relatively low values, a pragmatic

approach to limit DA adjustments to variables, which we

cannot objectively assess with the error covariance di-

agnostics presented here. A possible alternative that we

did not explore would be the use of correlations in the

state vector to establish correlations for background error

values and perform a spatially dependent adjustment of

the background error values for unobserved variables

[localized, in order to minimize the effect of spurious

correlations, similar to the treatment of inflation factors

inAnderson (2009)].Relatedly, a second limitation is that

the approach presented here scales the full background

error field for each variable, thereby assuming that its

underlying spatial structure is correct. Given enough

observations to provide reliable statistics, it is easy to

allow for structural changes by dividing the observations

into more types: for example, by distinguishing between

coastal and offshore observations or observations at dif-

ferent times of year, resulting in spatial or temporal

structure in the background and observation error values.

It is further possible to adjust off-diagonal elements by

estimating length scales (see, e.g., Ménard 2016). A third

limitation of our approach is that the influence of the

tangent linear model dynamics is ignored in the compu-

tation of HBHT. While Bowler (2017) suggests basing the

estimation of background errors on observations from

the start of a DA cycle, we find that model dynamics had

only a minor effect on our results (see section 3d). They

may, however, be more important in other applications,

especially when long DA cycles are used.

The covariance tuning is based on an FPI, which con-

verges quickly in about five iterations. In our experi-

ments, we observed that the FPI converges to similar, but
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not identical, values if it is based on 1 instead of 10 sim-

ulations with two cycles each (see section 3c). Our results

show that the 20 (nonconsecutive) cycle statistics, which

are based on approximately 10 times the number of ob-

servations, are more representative and, thus, preferable

to the two-cycle statistics. This suggests an FPI setup for

practical applications that bases its first iterations on

computationally cheap DA simulations, followed by it-

erations using more expensive simulations. The first it-

erations are used to achieve an initial convergence toward

rough estimates of the error covariance values; to achieve

the final convergence, the following iterations use more

representative DA simulations consisting of more cycles

and incorporating more observations.
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APPENDIX A

Diagnostics for Log-Transformed Variables

While the diagnostics for the fixed-point iteration are

derived in Desroziers et al. (2005) assuming Gaussian

error statistics, it is not obvious that the theory applies

more generally to variables with non-Gaussian distri-

butions and error statistics. Here, we reexamine the

assumptions of the quadratic, incremental form of log-

normal 4D-Var (Song et al. 2016a) used in the present

data assimilation system and show that within the con-

straints of the linearized theory, the diagnostics remain

appropriate.

As discussed more extensively in Fletcher and

Zupanski (2006) and Song et al. (2016a), the cost func-

tion for lognormal variables can be expressed as

J
L
(x)5

1

2
[log(x)2 log(x

b
)]TB21

L [log(x)2 log(x
b
)]

1
1

2
[log(y)2 log(~x)]TR21

L [log(y)2 log(~x)] . (A1)

Background and observation error covariances in

log-transformed space are represented by BL and RL,

respectively. The nonlinear observation operator H

interpolates the state vector both in time and space;

thus, model values at the observations can be written as

~x 5 H(x). The desired analysis initial condition xa is

obtained by finding x that minimizes Eq. (A1), but

nonlinearities introduce minimization challenges.

Nonlinearities in H can be eliminated by developing

an incremental form and assuming small deviations to

the background. Specifically, dx5 xa2 xb represents the

nontransformed increment, and the values of the anal-

ysis in observation space can be approximated in line-

arized form

~x
a
5H(x

b
1 dx)’H(x

b
)1Hdx ,

whereH represents the tangent linear approximation toH.

Introduction of small increments to Eq. (A1) is not suf-

ficient to render the cost function quadratic, and, therefore,

its minimization still requires an iterative procedure. A

quadratic form for JL is obtained through linearization of

the natural logarithm function and can be written

log[H(x
a
)]’ log[H(x

b
1Hdx)]’ log[H(x

b
)]1LHdx ,

where

L[
›log(~x)

›~x

����
~x5H(xb)

5

2
666664

H(x
b
)
1

0 ⋯ 0

0 H(x
b
)
2

⋯ 0

..

. ..
.

⋱ ..
.

0 0 ⋯ H(x
b
)
nobs

3
777775

21

,

and the subscript 1, 2, . . ., nobs represents the observation

index up to a total of nobs observations.

It is convenient now to introduce the log-space in-

crement dg 5 log(xa) 2 log(xb), which itself yields

x
a
5 x

b
+ exp(dg) ,

where + indicates a Hadamard (element by element)

product. For small increments dg,

dx5 x
b
+ exp(dg)2 x

b
’ x

b
+ (11 dg)2 x

b
’ x

b
+ dg .

Letting Xb define a diagonal matrix with the elements

of xb on the diagonal, the logarithm of the analysis in

observation space is expressed in terms of log-space

increments

log[H(x
b
1 dx)]’ log[H(x

b
)]1LHX

b
dg

5 log[H(x
b
)]1H

L
dg

and it follows that
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log[H(x
t
)]’ log[H(x

b
)]1H

L
[log(x

t
)2 log(x

b
)] . (A2)

Thus, HL5LHXb represents the tangent linear operator

that maps log-space increments dg to observation space.

Denoting the log-space deviations between observa-

tions and the background at observation points and

times as do
b 5 log(y) 2 log[H(xb)], Eq. (A1) assumes its

quadratic, incremental form:

J
L
(dg)5

1

2
dgTB21

L 1
1

2
(do

b 2H
L
dg)TR21

L (do
b 2H

L
dg) .

(A3)

The similarity between traditional, incremental 4D-Var

assuming Gaussian statistics (Courtier et al. 1994) and

quadratic, incremental, lognormal 4D-Var is evident.

The solution that minimizes JL(dg) is

dg5K
L
do
b, where K

L
5B

L
HT

L(HL
B

L
HT

L 1R
L
)21

is a gain matrix defined in terms of log-transformed

covariance matrices and linearized representations of

the log-transformed model.

Following Desroziers et al. (2005), we examine sev-

eral consistency diagnostics. For example,

do
b 5 log(y)2 log[H(x

b
)] ,

5 log(y)2 log[H(x
t
)]1 log[H(x

t
)]2 log[H(x

b
)] ,

5~e
L
1H

L
ebL .

Here, ~eL and ebL represent the observational and back-

ground errors of log-transformed variables, respectively,

and these errors are assumed to be uncorrelated. De-

viations between log-transformed observations and

analysis at observation locations and times become

do
a 5 log(y)2 log[H(x

a
)]’ log(y)2 flog[H(x

b
)]1H

L
dgg

5 (I2H
L
K

L
)do

b .

And differences between the log-transformed analysis

and background in observation space are given by

da
b 5 log[H(x

a
)]2 log[H(x

b
)]’H

L
dg .

From these definitions, the following expectation

values are obtained:

E(do
bd

oT
b )5R

L
1H

L
B

L
HT

L ,

E(da
bd

oT
b )5H

L
B

L
HT

L ,

E(do
ad

oT
b )5R

L
,

E(da
bd

oT
a )5H

L
A

L
HT

L ,

where AL is the analysis error covariance in log space.

These expressions are analogous to those derived by

Desroziers et al. (2005), with the appropriate changes in

covariance matrices and linearizations to the log-

transformed model.

APPENDIX B

Treatment of Log-Chlorophyll

In our 4D-Var DA system, we presume that both the

large phytoplankton and small phytoplankton variables

contribute toward model chlorophyll using fixed but

different carbon-to-chlorophyll a ratios. That is, we

presume

xchl 5a
LP

xLP 1a
SP
xSP, (B1)

where aLP and aSP are the carbon-to-chlorophyll a ratios

for LP and SP, respectively. We further assume that

chlorophyll a is approximately lognormally distributed

(see, e.g., Song et al. 2012, 2016a). This assumption leads

to an issue, as we need to assign a distribution to both LP

and SP, and, based on Eq. (B1), the two variables have

neither normal nor lognormal distributions. Yet, in

practice, based on an analysis of the distributions of all

variables in the model output, none of the variables has

an exact normal or lognormal distribution. Hence, as for

all other variables, we assign the distribution that better

approximates the LP and SP distributions observed in

the model: for both variables, this is the lognormal

distribution.

The lognormal assumption poses an obstacle when

computing the error covariance diagnostics (see section

2c) for chlorophyll a. The properties do
a , d

o
b, and da

b, on

which the statistics in Desroziers et al. (2005) are based,

now require the computation of differences in log space.

For example, for lognormal variables, do
b becomes

do
b 5 log(y)2 log[H(x

b
)] , (B2)

where here, and in the following, the log transformation

is performed elementwise when applied to a vector. The

derivation of the relationships among ~sb, sb, ~so, and so

[see Eq. (7)] in Desroziers et al. (2005) requires that the

tangent linear assumption holds. For lognormal vari-

ables, this entails

log[H(x
b
)]2 log[H(x

t
)]’H

L
[log(x

b
)2 log(x

t
)] , (B3)

where xt is the presumed true model state, and HL is the

linearized observation operator specific to the 4D-Var

implementation with log transformation [see appendix A
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and Eq. (A2) therein for a derivation and section 2.3 in

Song et al. (2016a) for further details]. While Eq. (B3),

thus, holds approximately true for the lognormal vari-

ables, there is a problem when including the weighting

with the carbon-to-chlorophyll a ratios aLP and aSP and

subsequent aggregation of LP and SP to chlorophyll a as

performed in Eq. (B1) into the observation operators. In

the following, we consider a simple (low dimensional)

example to showcase the log-chlorophyll problem and

the solution we use in our FPI implementation. The

example can easily be extended to the general, higher-

dimensional case with more variables. Given a single

chlorophyll a observation ychl and ~x 5 (~xLP, ~xSP)T 5 H(x)

the model solution for LP and SP at the observation

location, the weighting with the carbon-to-chlorophyll a

ratios, and aggregation can be included in the matrix

A 5 (aLP, aSP), so that ~xchl 5A~x. Because of the log

transformation,

log[AH(x
b
)]2 log[AH(x

t
)] 6¼ AH

L
[log(x

b
)2 log(x

t
)] ,

and, thus, A cannot be easily included in the computa-

tion of do
a , d

o
b, and da

b in this example or the general case

when A contains multiple instances of weighting and

aggregation of LP and SP to chlorophyll a.

A solution to the log-transformation issue is, thus, to

avoid the weighting and aggregation of LP and SP to

chlorophyll a. Instead, chlorophyll observations are split

into LP and SP, and the comparison is performed for

both variables without further transformation so that

Eq. (B3) holds. Critically, our approach does not require

the knowledge of the LP-to-SP ratio (LP:SP) in the

observations (it is typically not known) but requires the

assumption that LP:SP is identical in y,H(xa), andH(xb)

at each chlorophyll aobservation location (it does not need

to be identical at different locations). In our simple ex-

ample, y 5 (yLP, ySP)T and ~x 5 (~xLP, ~xSP)T5 H(x). To

compute do
a , d

o
b, and da

b, we then use the identical LP:SP

assumption to define two constants, b and g, that convert

chlorophyll a to LP and SP, respectively, and for y,H(xa),

and H(xb). It follows

do
b 5 log(y) 2 log(Hx

b
)5 log

 
yLP

ySP

!
2 log

 
~xLPb

~xSPb

!

5 log

 
b ychl

g ychl

!
2 log

 
b ~xchlb

g ~xchlb

!

5 log

 
ychl

ychl

!
2 log

 
~xchlb

~xchlb

!
.

Because both ychl and ~xchlb are known, the result is easy to

obtain and does not depend on the value for b or

g and, thus, the actual value of LP:SP. The properties do
a

and da
b are computed analogously to do

b using the same

assumption.

A major effect assuming identical LP:SP is that the

values of sb for LP and SP in the FPI converge toward

each other; consequently, the background error entries

typically (depending on their spatial structure and ob-

servation locations) converge or remain identical, as in

the case of DAC2. As a result, the corrective increment

applied by theDA system does not significantly alter the

LP:SP ratio from that of the prior model state. As no

information of LP:SP is contained in the satellite

chlorophyll a data, this could be considered a positive

side effect.

REFERENCES

Anderson, J. L., 2009: Spatially and temporally varying adaptive

covariance inflation for ensemble filters. Tellus, 61A, 72–83,

https://doi.org/10.1111/j.1600-0870.2008.00361.x.

Bölöni, G., and K. Horvath, 2010: Diagnosis and tuning of back-

ground error statistics in a variational data assimilation sys-

tem. Quart. J. Hung. Meteor. Serv., 114, 1–19.

Bormann, N., A. Collard, and P. Bauer, 2010: Estimates of spatial

and interchannel observation-error characteristics for current

sounder radiances for numerical weather prediction. II: Ap-

plication to AIRS and IASI data.Quart. J. Roy. Meteor. Soc.,

136, 1051–1063, https://doi.org/10.1002/qj.615.

——, M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and

A. McNally, 2016: Enhancing the impact of IASI observations

through an updated observation-error covariance matrix.

Quart. J. Roy. Meteor. Soc., 142, 1767–1780, https://doi.org/

10.1002/qj.2774.

Bowler, N. E., 2017: On the diagnosis of model error statistics using

weak-constraint data assimilation.Quart. J. Roy.Meteor. Soc.,

143, 1916–1928, https://doi.org/10.1002/qj.3051.
Campbell, J. W., 1995: The lognormal distribution as a model for

bio-optical variability in the sea. J. Geophys. Res., 100, 13 237–

13 254, https://doi.org/10.1029/95JC00458.

Campbell, W. F., E. A. Satterfield, B. Ruston, and N. L. Baker,

2017: Accounting for correlated observation error in a

dual-formulation 4D variational data assimilation system.

Mon. Wea. Rev., 145, 1019–1032, https://doi.org/10.1175/

MWR-D-16-0240.1.

Cordoba,M., S. L. Dance, G. A. Kelly, N. K. Nichols, and J. A.Waller,

2017: Diagnosing atmospheric motion vector observation errors

for an operational high-resolution data assimilation system.Quart.

J. Roy. Meteor. Soc., 143, 333–341, https://doi.org/10.1002/qj.2925.

Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy

for operational implementation of 4D-Var, using an in-

cremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–

1387, https://doi.org/10.1002/qj.49712051912.

Daescu, D. N., and R. Todling, 2010: Adjoint sensitivity of the

model forecast to data assimilation system error covariance

parameters. Quart. J. Roy. Meteor. Soc., 136, 2000–2012,

https://doi.org/10.1002/qj.693.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis:

Configuration and performance of the data assimilation sys-

tem.Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/

10.1002/qj.828.

500 MONTHLY WEATHER REV IEW VOLUME 146

Unauthenticated | Downloaded 12/28/22 05:19 PM UTC

https://doi.org/10.1111/j.1600-0870.2008.00361.x
https://doi.org/10.1002/qj.615
https://doi.org/10.1002/qj.2774
https://doi.org/10.1002/qj.2774
https://doi.org/10.1002/qj.3051
https://doi.org/10.1029/95JC00458
https://doi.org/10.1175/MWR-D-16-0240.1
https://doi.org/10.1175/MWR-D-16-0240.1
https://doi.org/10.1002/qj.2925
https://doi.org/10.1002/qj.49712051912
https://doi.org/10.1002/qj.693
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828


Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning

of observation-error parameters in a variational assimilation.

Quart. J. Roy. Meteor. Soc., 127, 1433–1452, https://doi.org/

10.1002/qj.49712757417.

——, L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of ob-

servation, background and analysis-error statistics in obser-

vation space. Quart. J. Roy. Meteor. Soc., 131, 3385–3396,

https://doi.org/10.1256/qj.05.108.

Doyle, J. D., Q. Jiang, Y. Chao, and J. Farrara, 2009: High-reso-

lution real-time modeling of the marine atmospheric bound-

ary layer in support of the AOSN-II field campaign.Deep-Sea

Res. II, 56, 87–99, https://doi.org/10.1016/j.dsr2.2008.08.009.
Edwards, C. A., A. M.Moore, I. Hoteit, and B. D. Cornuelle, 2015:

Regional ocean data assimilation.Annu. Rev. Mar. Sci., 7, 21–

42, https://doi.org/10.1146/annurev-marine-010814-015821.

Fletcher, S. J., and M. Zupanski, 2006: A data assimilation method

for log-normally distributed observational errors. Quart.

J. Roy. Meteor. Soc., 132, 2505–2519, https://doi.org/10.1256/

qj.05.222.

Haidvogel, D. B., and Coauthors, 2008: Ocean forecasting in

terrain-following coordinates: Formulation and skill as-

sessment of the Regional Ocean Modeling System.

J. Comput. Phys., 227, 3595–3624, https://doi.org/10.1016/
j.jcp.2007.06.016.

Howes, K. E., A. M. Fowler, and A. S. Lawless, 2017: Accounting

for model error in strong-constraint 4D-Var data assimilation.

Quart. J. Roy. Meteor. Soc., 143, 1227–1240, https://doi.org/

10.1002/qj.2996.

Karspeck, A. R., 2016: An ensemble approach for the estimation of

observational error illustrated for a nominal 18 global ocean
model. Mon. Wea. Rev., 144, 1713–1728, https://doi.org/

10.1175/MWR-D-14-00336.1.

Kishi,M. J., andCoauthors, 2007: NEMURO—Alower trophic level

model for the North Pacific marine ecosystem. Ecol. Modell.,

202, 12–25, https://doi.org/10.1016/j.ecolmodel.2006.08.021.

Li, H., E. Kalnay, and T.Miyoshi, 2009: Simultaneous estimation of

covariance inflation and observation errors within an ensem-

ble Kalman filter. Quart. J. Roy. Meteor. Soc., 135, 523–533,

https://doi.org/10.1002/qj.371.

Mattern, J. P., and C. A. Edwards, 2017: Simple parameter esti-

mation for complex models—Testing evolutionary techniques

on 3-dimensional biogeochemical ocean models. J. Mar. Syst.,

165, 139–152, https://doi.org/10.1016/j.jmarsys.2016.10.012.

——, H. Song, C. A. Edwards, A. M. Moore, and J. Fiechter, 2017:

Data assimilation of physical and chlorophyll a observations in

the California Current System using two biogeochemical

models. Ocean Modell., 109, 55–71, https://doi.org/10.1016/

j.ocemod.2016.12.002.

Ménard, R., 2016: Error covariance estimation methods based on

analysis residuals: Theoretical foundation and convergence

properties derived from simplified observation networks.

Quart. J. Roy. Meteor. Soc., 142, 257–273, https://doi.org/

10.1002/qj.2650.

Neveu, E., A. M. Moore, C. A. Edwards, J. Fiechter, P. Drake,

W. J. Crawford, M. G. Jacox, and E. Nuss, 2016: An historical

analysis of the California Current circulation using ROMS

4D-Var: System configuration and diagnostics.OceanModell.,

99, 133–151, https://doi.org/10.1016/j.ocemod.2015.11.012.

Raghukumar, K., C. A. Edwards, N. L. Goebel, G. Broquet,

M. Veneziani, A. M. Moore, and J. P. Zehr, 2015:

Impact of assimilating physical oceanographic data on mod-

eled ecosystem dynamics in the California Current System.

Prog. Oceanogr., 138, 546–558, https://doi.org/10.1016/

j.pocean.2015.01.004.

Song, H., C. A. Edwards, A. M. Moore, and J. Fiechter, 2012: In-

cremental four-dimensional variational data assimilation of

positive-definite oceanic variables using a logarithm trans-

formation. Ocean Modell., 54–55, 1–17, https://doi.org/

10.1016/j.ocemod.2012.06.001.

——, ——, ——, and ——, 2016a: Data assimilation in a coupled

physical–biogeochemical model of the California Current

System using an incremental lognormal 4-dimensional varia-

tional approach: Part 1—Model formulation and biological

data assimilation twin experiments. Ocean Modell., 106, 131–

145, https://doi.org/10.1016/j.ocemod.2016.04.001.

——, ——, ——, and ——, 2016b: Data assimilation in a coupled

physical–biogeochemical model of the California Current

System using an incremental lognormal 4-dimensional varia-

tional approach: Part 3—Assimilation in a realistic context

using satellite and in situ observations. Ocean Modell., 106,

159–172, https://doi.org/10.1016/j.ocemod.2016.06.005.

Stammer, D., M. Balmaseda, P. Heimbach, A. Köhl, and

A. Weaver, 2016: Ocean data assimilation in support of

climate applications: Status and perspectives. Annu.

Rev. Mar. Sci., 8, 491–518, https://doi.org/10.1146/

annurev-marine-122414-034113.

Stewart, L. M., S. L. Dance, N. K. Nichols, J. R. Eyre, and

J. Cameron, 2014: Estimating interchannel observation-error

correlations for IASI radiance data in the Met Office system.

Quart. J. Roy. Meteor. Soc., 140, 1236–1244, https://doi.org/

10.1002/qj.2211.

Talagrand, O., 1999: A posteriori evaluation and verification of

analysis and assimilation algorithms. Workshop on Diagnosis

of Data Assimilation Systems, Reading, United Kingdom,

ECMWF, 17–28, https://www.ecmwf.int/sites/default/files/elibrary/

1999/12547-posteriori-evaluation-and-verification-analysis-

and-assimilation-algorithms.pdf.

Veneziani, M., C. A. Edwards, J. D. Doyle, and D. Foley, 2009: A

central California coastal ocean modeling study: 1. Forward

model and the influence of realistic versus climatological

forcing. J. Geophys. Res., 114, C04015, https://doi.org/10.1029/

2008JC004774.

Waller, J. A., S. Ballard, S. Dance, G. Kelly, N. K. Nichols, and

D. Simonin, 2016a: Diagnosing horizontal and inter-channel

observation error correlations for SEVIRI observations

using observation-minus-background and observation-minus-

analysis statistics.Remote Sens., 8, 581, https://doi.org/10.3390/

rs8070581.

——, S. L. Dance, andN. K. Nichols, 2016b: Theoretical insight into

diagnosing observation error correlations using observation-

minus-background and observation-minus-analysis statistics.

Quart. J. Roy. Meteor. Soc., 142, 418–431, https://doi.org/

10.1002/qj.2661.

——, D. Simonin, S. L. Dance, N. K. Nichols, and S. P. Ballard,

2016c: Diagnosing observation error correlations for Doppler

radar radial winds in the Met Office UKV model using

observation-minus-background and observation-minus-

analysis statistics. Mon. Wea. Rev., 144, 3533–3551, https://

doi.org/10.1175/MWR-D-15-0340.1.

Yang, C., S. Masina, and A. Storto, 2017: Historical ocean rean-

alyses (1900–2010) using different data assimilation strategies.

Quart. J. Roy. Meteor. Soc., 143, 479–493, https://doi.org/

10.1002/qj.2936.

FEBRUARY 2018 MATTERN ET AL . 501

Unauthenticated | Downloaded 12/28/22 05:19 PM UTC

https://doi.org/10.1002/qj.49712757417
https://doi.org/10.1002/qj.49712757417
https://doi.org/10.1256/qj.05.108
https://doi.org/10.1016/j.dsr2.2008.08.009
https://doi.org/10.1146/annurev-marine-010814-015821
https://doi.org/10.1256/qj.05.222
https://doi.org/10.1256/qj.05.222
https://doi.org/10.1016/j.jcp.2007.06.016
https://doi.org/10.1016/j.jcp.2007.06.016
https://doi.org/10.1002/qj.2996
https://doi.org/10.1002/qj.2996
https://doi.org/10.1175/MWR-D-14-00336.1
https://doi.org/10.1175/MWR-D-14-00336.1
https://doi.org/10.1016/j.ecolmodel.2006.08.021
https://doi.org/10.1002/qj.371
https://doi.org/10.1016/j.jmarsys.2016.10.012
https://doi.org/10.1016/j.ocemod.2016.12.002
https://doi.org/10.1016/j.ocemod.2016.12.002
https://doi.org/10.1002/qj.2650
https://doi.org/10.1002/qj.2650
https://doi.org/10.1016/j.ocemod.2015.11.012
https://doi.org/10.1016/j.pocean.2015.01.004
https://doi.org/10.1016/j.pocean.2015.01.004
https://doi.org/10.1016/j.ocemod.2012.06.001
https://doi.org/10.1016/j.ocemod.2012.06.001
https://doi.org/10.1016/j.ocemod.2016.04.001
https://doi.org/10.1016/j.ocemod.2016.06.005
https://doi.org/10.1146/annurev-marine-122414-034113
https://doi.org/10.1146/annurev-marine-122414-034113
https://doi.org/10.1002/qj.2211
https://doi.org/10.1002/qj.2211
https://www.ecmwf.int/sites/default/files/elibrary/1999/12547-posteriori-evaluation-and-verification-analysis-and-assimilation-algorithms.pdf
https://www.ecmwf.int/sites/default/files/elibrary/1999/12547-posteriori-evaluation-and-verification-analysis-and-assimilation-algorithms.pdf
https://www.ecmwf.int/sites/default/files/elibrary/1999/12547-posteriori-evaluation-and-verification-analysis-and-assimilation-algorithms.pdf
https://doi.org/10.1029/2008JC004774
https://doi.org/10.1029/2008JC004774
https://doi.org/10.3390/rs8070581
https://doi.org/10.3390/rs8070581
https://doi.org/10.1002/qj.2661
https://doi.org/10.1002/qj.2661
https://doi.org/10.1175/MWR-D-15-0340.1
https://doi.org/10.1175/MWR-D-15-0340.1
https://doi.org/10.1002/qj.2936
https://doi.org/10.1002/qj.2936

